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The difference between quantum entities and classical entities can be noticed in 
many different ways. Quantum logic has been profoundly interested in analyzing 
this difference and trying to understand it. Our aim is to represent a macroscopic 
classical mechanistic laboratory situation and to show that this situation entails 
a nonclassical logical structure. The example was presented some time ago by 
one of us, showing it to have a quantum probability model, and analyzing the 
effect of this on a possible understanding of the origin of quantum probabilities. 
In this paper we make a similar attempt, but now concentrate on the logical 
aspects of the example. 

1. C L A S S I C A L  E N T I T I E S  A N D  Q U A N T U M  E N T I T I E S  

In the discipline o f  qua n t um  logic the basic structure o f  research was 
originally the structure o f  the o r thomodu la r  lattice. Quantumlike  entities 
had such a structure o f  an o r thomodu la r  lattice for  the set o f  their proposi-  
tions, while classical entities had a structure o f  a distributive o r thomodu la r  
lattice (or  Boolean algebra) for the set o f  their propositions.  Meanwhile the 
classification o f  classical entities versus quantumlike (or  nonclassical) entities 
has been studied in much  more  detail, relating the corresponding structures 
to real physical situations (e.g., Foulis and Randall ,  1978, 1981 ; Aerts, 1981, 
1983; Piton,  1976, 1990). We have taken a very easy criterion f rom the 
results o f  this research on the possibility o f  distinguishing between the two 
kinds o f  entities, classical and nonclassical. 

We shall consider an entity (classical or  nonclassical) to be described 
by a set M (denoted by m, n . . . .  ) o f  measurements  and a set E (denoted by 
p, q . . . .  ) o f  states. In different approaches different names have been given 
to these two basis sets (measurements  have been called yes -no  experiments, 
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questions, propositions, observables, and operations, and states have also 
been called preparations), but mainly these differences will play no role in 
what we would like to show in this paper. The results can easily be translated 
in the proper approach. We must remark that when we use the concept 
"state," we mean "pure state." The more general situation of mixed states 
will not be considered here, since our example in any case does not contain 
mixed states. The following characterization of a classical entity shall be 
adopted [it is the characterization explicitly used in Aerts (1981, 1983)]: 

Criterion for classical character of  an entity. An entity, described by a 
set of measurements M and a set of states Z, is a classical entity if for any 
state p (pure state), for an arbitrary measurement m, the outcome of the 
measurement can be predicted with certainty (probability equal to 1). 

This definition is certainly satisfied for all the classical entities described 
by classical mechanics, since the measurements are then represented by real- 
valued functions on the phase space of states, and indeed to a certain state 
p there corresponds one point of phase space, and every measurement 
(observable) has one value, which is the outcome that can be predicted 
with certainty. For quantum entities described by quantum mechanics this 
definition is obviously not satisfied. Indeed, for a state represented by a state 
vector that is not an eigenstate of a certain measurement, represented by a 
self-adjoint operator, no prediction of any outcome can be given. 

Moreover, we will explicitly construct the lattice of propositions going 
together with the entity of the example and see that it is a pure quantum 
logic lattice (distributivity is not satisfied). 

2. PRESENTATION OF THE EXAMPLE 

The classical macroscopic spin model that we will present in this section 
has been presented in Aerts (1986, 1987, 1991) with the aim of giving a 
possible explanation for the nonclassical character of  the quantum probabil- 
ities. It is shown in Aerts (1986, 1987, 1991) that a lack of knowledge 
about the measurements on a physical entity gives rise to a collection of 
probabilities connected to this entity that is nonclassical. It is also shown 
that the nonclassical probability calculus of quantum mechanics can be 
interpreted as being the result of a lack of knowledge about the measure- 
ments. In this paper we describe in much more detail the measurement 
apparatus, the preparation apparatus, the measurements, and the prepara- 
tions, such that it is shown that the relative frequencies of repeated experi- 
ments of  this classical situation indeed lead to the same collection of 
probabilities as the one of the spin of a spin-1/2 quantum entity [this detailed 
description can also be found in Aerts (1991)]. And then we will see that 
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also the criterion for a classical entity on the level of quantum logic is not 
satisfied for this example, such that we really can speak of a macroscopic 
mechanistic quantum logic example. 

We first give a detailed description of the construction of the measure- 
ment apparatus MA(a). We have a rigid rod constituted of a nonconducting 
material (for example, some plastic) of a certain length l (see Figure 1). At 
the endpoints of the rod are two little iron balls, ball 1 and ball 2. In the 
laboratory where our experiment will be performed we have a battery at our 
disposal that contains a certain fixed amount of negative charge s. There is 
a mechanism that brings both of the iron balls during a certain time in 
contact with the battery, such that they get charged. As a result ball 1 is 
charged with a certain charge s~ and ball 2 with a charge s-s~ =s2. Then 
the balls get uncharged again. And immediately after, they get charged again, 
and then uncharged again. And so on. The rigid rod is placed fixed in the 
laboratory such that ball 1 is in space direction a and ball 2 in space direction 
- a  in a plane orthogonal to some fixed direction x. The physical entities 
that we consider are little iron balls positively charged with a fixed charge 
q. They can be put in the neighborhood of the measurement apparatus and 
connected to it by a nonconducting rigid rod of length 1/2. The measurement 
re(a) consists of letting go the positive charge q. It will be attracted by the 
two negative charges of the measuring apparatus by Coulomb forces F~ and 
F2. We suppose that this happens in a viscous medium, such that under the 
influence of friction, finally the positively charged ball q will end up at one 

direction a F1 

ball 1 ~N~I ~ - ~ q  

Yro F2 direction x 

d of length 1 

ball 2 �9 S2 
direction -a 

Fig. 1. The measuring apparatus MA(a) consists of a rigid rod of length I with two iron balls, 
at the endpoints ball l and ball 2, alternatively charged and decharged by an amount of negative 
charge s, such that ball 1 gets one part s~ of the charge and ball 2 the otber part s2=s-s~. The 
measurement re(a) consists of connecting a positively charged ball q at the center of the rigid 
rod of the measuring apparatus by means of a rigid rod of length l/2. The charge q will be 
captured by one of the two negative charges. If it is captured by sj, then we give outcome "a- 
up" to measurement re(a); if it is captured by s2, then we give outcome "a-down" to the 
measurement re(a). 
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of the balls of the measuring apparatus. If it ends up at ball 1, we give the 
outcome "a-up" and if it ends up at ball 2 we give the outcome "a-down" 
for the measurement m(a). 

To make the analogy with the Stern-Gerlach measurements on the spin 
of a quantum entity complete, we suppose that we cannot directly manipu- 
late the charge q (as we cannot directly manipulate a quantum entity's spin). 
Hence the preparation of the state of q has to be done by means of a 
preparation apparatus PA(b). Exactly as for the spin case, the preparation 
apparatus is slightly different from the measurement apparatus. We set at 
work the part of the measuring apparatus MA(b) which is the rigid rod with 
its two charged balls I and 2 on the ball q, but only conserve those balls q 
that have been captured by ball 1 of the measuring apparatus (the balls q 
that are captured by ball 2 are considered to be annihilated). Hence after the 
preparation with apparatus PA(b), the charge q is at a location in direction b 
and length I/2 from the center of the measurement apparatus rod. We call 
this state p(b) (see Figure 2). 

An experiment e(a, b) consists of a preparation of state p(b) followed 
by a measurement m(a). We can now start making the repeated experiments. 
In relation with the state p(b) and afterward the measurements m(a), we can 
count the number N(a-up) of outcomes "a-up" or the number N(a-down) 
of outcomes "a-down" and divide by the total number N of classical entities 
that have participated in the repeated experiments. If the relative frequencies 
v(a-up) and v(a-down) approximate real numbers between 0 and 1 if N 
goes to infinity, then we call these real numbers the probabilities P(a-up) 
and P(a-down). We can introduce the following probabilities: P(a, b) = the 
probability that if the classical entity C is prepared with the state p(b), and 
the measurement m(a) is performed, the outcome "a-up" will occur and 
hence the probability that the experiment e(a, b) yields the outcome "a-up"; 
P ( - a ,  b) = the probability that if the classical entity C is prepared with the 
state p(b), and the measurement m(a) is performed, the outcome "a-down" 
will occur and hence the probability that the experiment e(a, b) yields the 
outcome "a-down." To determine these probabilities, we must go to a labor- 
atory and perform the repeated experiments, and then see what we find for 

Fig. 2. 

direction b 

q 

direction x 
The preparation (state) p(b) by means of the preparation apparatus PA(b). 
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the relative frequencies. I f  we do .this, we find that they will depend on the 
angle between the two space directions a and b, and if we take P(a, b ) =  
cos2(y/2), where y is the angle between the space directions a and b, we are 
in good agreement with the experimental findings. 

We have constructed an experimental situation using only mechanistic 
classical macroscopic entities that is similar to the experimental situation of  
the spin measurement by a Stern-Gerlach apparatus on a quantum entity 
of  spin 1/2. Both lead to the same set of  probabilities. The probabilities of  
the quantum example can be derived also theoretically, using the quantum 
mechanical description of  the Stern-Gerlach measurement situation. But it 
must be pointed out that this quantum calculation does not give any speci- 
fication on the physical mechanism by which the quantum measuring appar- 
atus (the Stern-Gerlach apparatus) affects the quantum entity to lead to one 
of  the possible outcomes. This mechanism, taking into account the enormous 
complexity of  the Stern-Gerlach apparatus, is probably very complicated, 
and full of  hidden randomness. For  our classical example we know the 
mechanism, and hence can propose a classical model for it. Of  course, like 
every theoretical model (also the quantum model), this model is an idealiza- 
tion of  the reality happening in the laboratory. It can be interpreted as a 
kind of  simple model for the working of  the quantum Stern-Gerlach appar- 
atus. Let us regard the measurement situation of  our classical macroscopic 
example a little bit closer, and see what model we can propose. The three 
charges are located in a plane, the positive charge q, prepared by p(b), at a 
point indicated by the direction b, and the two negative charges of  re(a) at 
diametrically opposed points indicated by the directions a and - a  (see Figure 
3). Let us call y the angle between the two space directions a and b. The 
forces F1 and F2 are the coulomb forces; hence 

st  " q $2" q 

IF, I -  rc e012 s'n2"r --''1(/2) IF2I = neol 2 cos2-r --'1,/2) (1) 

Fig. 3. We consider the three charges from Figure ! as 
they are located in a plane; q is the classical entity located 
at the point indicated by the direction b, st and s2 of the 
measuring apparatus are located at the points indicated by 
the directions a and -a. FI and/72 are the forces of attraction 
between s~ and s, and s2 and s. 

Sl 

q 
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The charge q will move under the influence of the two fixed charges s~ 
and s2 of the measurement apparatus, and finally will arrive at rest at one 
of the two places where sl or s2 is located. We propose the following model: 

1. We suppose that the place where finally the charge q will end up is 
determined by the magnitude of the forces of attraction between the three 
charges. Namely, if levi is bigger than IF21, q will move and arrive at the 
place where s~ is located, and if lEd is smaller than IF21, q will move and 
arrive at the place where s2 is located. 

2. The charges s~ and s2 are in a certain sense arbitrary. Because at the 
moment where the charge q is put in the measurement apparatus, we do not 
know in which state the charging and uncharging of the two charged balls, 
1 and 2, of the measuring apparatus is. If  this happens at a moment of 
unchanged charges s~ and &, nothing will happen with the charge q (since 
there are no forces). The action will only start after the next charging. In 
any case, since we wait until one of the two outcomes is registered, this 
experimental situation can be modeled by supposing that for the actual 
motion of the charge q, and hence for the occurrence of  one of the out- 
comes, s~ and s2 are such that s~ is a random number in the interval [0, s], 
and s2 = s -  Sl. 

By means of hypotheses 1 and 2, we can give a mathematical derivation 
for the probabilities P(a, b) and we see that we find indeed the already 
experimentally approximated probabilities: 

P(a, b )=  Probability that IFd is bigger than IFz[ 

= p (  sj " q & " q ) 

\ zeol 2 sin2(7/2) > Zeol ~ cos~7~/2) 

3. THE QUANTUM LOGICAL STRUCTURE OF THE EXAMPLE 

Because these experimental probabilities P(a, b), through the relative 
frequencies of repeated measurements, are the only connection of a theory 
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with the experiments in our reality, we can describe this classical entity by 
the spin formalism of quantum mechanics. Concretely this means that a 
state of the iron ball of positive charge q in the direction b can be represented 
by a unit vector Ub of a two-dimensional complex Hilbert space. If b-- 
(cos ~b. sin 0, sin ~b- cos 0, cos 0) where (0, ~b ) are the spherical coordinates 
in some fixed coordinate system with origin at the center of the rigid rod of 
the measuring apparatus, then we can represent the state of the classical 
entity by the unit vector 

U b = (e -i4~/2" cos(0/2), e i4~/2, sin(0/2)) (3) 

of a two-dimensional complex Hilbert space as is also done for the spin state 
of the spin of a spin-l/2 quantum entity. And the measurement m(a) is 
represented by means of the self-adjoint operator 

[ cos a e -;~ sin a'x 
SaB=~eifl sin a -cos a ) (4) 

where a=  (cos fl �9 sin a, sin fl �9 sin a, cos a). The eigenvalue +l  corresponds 
to the outcome "a-up" and the eigenvalue -1 to the outcome "a-down" 
of the measurement re(a). The ordinary rules of the quantum mechanical 
calculations lead to the corresponding probabilities found as limits of the 
relative frequencies of the repeated measurements re(a) if the entity is pre- 
pared with preparation p(b). Also, all the other happenings that can be 
imagined for the case of the spin of the quantum entity of spin 1/2 have 
their counterpart in our classical model. For example, performing the meas- 
urement re(a) on the classical entity in state Ub prepared by the preparation 
p(b) indeed changes this state Ub into another state, depending on the out- 
come. The state after the measurement is ua if the outcome "a-up" has 
occurred, and is u_a if the outcome "a-down" has occurred. This change of 
state, which "really" happens in our classical example, is what often is 
referred to as the "collapse of the wave function" in the quantum language. 
This change of state is governed in our classical example by the action of 
the Coulomb forces, and hence does not happen instantaneously. In the 
quantum mechanical situation this change of state should be governed by 
the interaction between the measurement apparatus A(Q,  a), Stern-Gerlach 
magnet + screen, with the quantum mechanical entity. We do not know the 
nature of this interaction, and hence cannot speculate about the "speed" 
with which it operates. 

We have constructed a situation with a macroscopic classical entity that 
can be described by the quantum formalism in a two-dimensional complex 
Hilbert space. The lattice of propositions that goes together with this macro- 
scopic example is then obviously also the same as the lattice, of propositions 
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about the spin of  a quantum entity of spin 1/2, which, as is well known, is 
a pure quantum logic lattice (distributivity is not satisfied). 

On the other hand, the criterion for the classical character of an entity 
that we mentioned in Section 1 is obviously not satisfied in the example. 
Indeed if the entity is in a state (pure state)p(b) for a measurement re(a) with 
a different from b and -b ,  we cannot predict the outcome. Both outcomes are 
possible with the probabilities that we have mentioned. The nonclassical 
aspect is due to the presence of a hidden variable in the measuring apparatus 
(or to the presence of  hidden measurements). We would like now to analyze 
the plausibility of the presence of this nonclassical aspect of "hidden meas- 
urements" for an eventual explanation of the quantum logical structure of 
quantum entities in general. 

4. THE PLAUSIBILITY OF OUR EXPLANATION 

The explanation for the quantum structure that we propose is only a 
possible explanation. We cannot prove that it is the correct one, and we 
certainly do not pretend it to be "complete." But we should like to end this 
section by indicating that our explanation as to the quantum structure of 
the probabilities, the non-Boolean structure of the lattice of propositions, 
and the nonvalidity of  the criterion for the classical character of  an entity is 
very plausible from a general physical point of view. We repeat: We explain 
the presence of  these quantum structures by the fact that there is a lack of 
knowledge on the state of  the measuring apparatus, or on the interaction 
between the measuring apparatus and the physical entity during the measure- 
ment. Let us show that this explanation is very plausible: If  we introduce 
the probability as approximate relative frequencies of repeated equivalent 
experiments, we have to be aware that the technique that we use in real 
laboratory circumstances to decide that we indeed are performing a series 
of  repeated experiments that are "equivalent" experiments depends in a very 
complicated and conventional way [in the sense used by Poincar~ (1902) 
and in the sense analyzed in detail in Aerts (1992)] on our prior knowledge 
of those pieces of reality that we use to construct the experiment, and which 
we accept to be equivalent. In the example that we have given, we have 
subdivided an experiment into two parts, a preparation of the physical entity 
and a measurement. Again for these two parts we can make the same remark. 
The technique that we use to decide that the preparations and measurements 
of repeated experiments are equivalent depends in a very complicated and 
conventional way on our prior knowledge of those pieces of reality used to 
construct the preparations and the measurements. 

The case where preparations (states) are not really equivalent on a deeper 
level has been treated in general by classical probability theory. In this case 
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we say in classical physics that the physical entity is prepared in a "mixed" 
state and not a "pure"  state. The pure states describe the deeper underlying 
reality for the mixed state. The formalization of  this situation leads to a 
classical statistical theory, making use of  classical Kolmogorovian probabil- 
ity models, and giving rise to a classical logical structure. The case where 
the measurements are not really equivalent on a deeper level has not been 
treated systematically, and cannot be treated by a classical probability theory 
once we want to consider several measurements that cannot be executed 
together. This is exactly the situation that we have artificially created in our 
macroscopic classical example, and we see that this situation can be described 
by the quantum mechanical formalism. Indeed we consider repeated meas- 
urements re(a) as equivalent only for the fact that the direction of  space 
determined by the rod that connects the two negative charges is the same. 
But as we have constructed the measurement apparatus we can see that on 
a deeper level, these measurements are not the same. The way in which the 
charge s will be distributed on the two balls 1 and 2 is in principle different 
for every measurement. It is this nonequivalence of  the measurement on a 
deeper level that is at the origin of the presence of  the probabilities that we 
can describe by the quantum mechanical formalism. We could say, m(a) is 
a "mixed" measurement. And the pure measurements would be the ones 
where we control the distribution of the charge s over the two balls of the 
measurement apparatus. 

Now the last question, is this explanation plausible for the situation of  
a quantum entity? To answer this question, let us regard the situation of  the 
Stern-Gerlach measurement connected with the spin. Indeed, also in this 
situation, we consider repeated measurements as equivalent only because the 
direction a of the constant part of  the magnetic field used in the Stern- 
Gerlach magnet + screen is the same. We do not know anything about the 
reality of  this Stern-Gerlach magnet+  screen on deeper levels. Since the 
Stern-Gerlach magnet+screen is a construction made of an enormous 
amount  of  atoms, it is "sure" that all these atoms will never be found in the 
same state for a repeated measurement. Hence it is very plausible that there 
are deeper "significant" levels, and that this Stern-Gerlach measurement is 
also a "mixed" measurement. If our explanation for the origin of  the pres- 
ence of  the quantum probabilities is correct, the situation in a quantum 
measurement would be so that we imagine always making the same measure- 
ment in the repeated experiments, but on a deeper level this is not true. And 
this fact gives rise to the quantumlike probabilities, and to quantum logical 
structures, exactly as in the case of  the explicit macroscopic classical example. 
The measuring apparatus MA(a) that we have introduced for our classical 
example can even be adapted as a phenomenological model for the Stern- 
Gerlach + screen. 
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This manner of the interpreting probabilities, and quantum logic, would 
also explain why this probability structure, and this quantum logic structure, 
is only found for the description of the entities in the microscopic world. 
Indeed, in this microscopic world, we make experiments with macroscopic 
entities, and since the measurement apparatus is macroscopic while the phys- 
ical entity is microscopic, very often the lack of a deeper-level description of 
the measuring apparatus introduces these quantumlike probabilities. In our 
macroscopic example we have imitated such a situation. If we accept our 
explanation, we can conclude by stating that the general structure of a 
probability model, and the general structure of a logic, connected with a 
general physical situation should be quantumlike. The classical probability 
structures, and the classical logics, represent the special situations where we 
can manipulate the measurement apparatus in such a detailed way that 
almost really equivalent measurements can be performed in the repeated 
experiments, and probability is only introduced from the presence of mixed 
states. These ideas are explored in a more complete way in Aerts (1992). 
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